Remote sensing image segmentation based on ant colony optimized fuzzy C-means clustering
نویسنده
چکیده
Middle spatial resolution multi-spectral remote sensing image is a kind of color image with low contrast, fuzzy boundaries and informative features. In view of these features, the fuzzy C-means clustering algorithm is an ideal choice for image segmentation. However, fuzzy C-means clustering algorithm requires a pre-specified number of clusters and costs large computation time, which is easy to fall into local optimal solution. In order to overcome these shortcomings, ant colony algorithm is employed to optimize fuzzy C-means algorithm in remote sensing image segmentation. First, the centers and number of clusters is determined by ant colony optimization algorithm. Then the initialization fuzzy C-means algorithm is used for remote sensing image classification. Experimental results show that the ant colony optimization is an effective method to solve the problem of fuzzy C-means algorithm in remote sensing image segmentation and the visual interpretation of segmentation is much improved by proposed ant colony optimized C-means clustering.
منابع مشابه
Brain Tumor Segmentation Using Fuzzy C Means With Ant Colony Optimization Algorithm
In computer vision, image segmentation is an important problem and plays vital role in medical imaging. Analysis and diagnosis of tumor in MRI brain image involves segmentation as very essential steep. It separates the region of interest objects from the background and the other objects. Several approaches are used for MRI brain tumor segmentation. Fuzzy C Means (FCM) is most widely used fuzzy ...
متن کاملAn Adaptive Aco-based Fuzzy Clustering Algorithm for Noisy Image Segmentation
The fuzzy c-means (FCM) has been a well-known algorithm in machine learning/data mining area as a clustering algorithm. It can also be used for image segmentation, but the algorithm is not robust to noise. The possibilistic c-means (PCM) algorithm was proposed to overcome such a problem. However, the performance of PCM is too sensitive to the initialization of cluster centers, and often deterio...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملMedical Image Segmentation based on Improved Fuzzy Clustering in Robot Virtual Surgical System
In view of the problems relating to the precision and convergence rate of traditional ant colony algorithm and fuzzy clustering algorithm on the medical image segmentation, a modified selfadaptive threshold ant colony optimization and fuzzy clustering (SAAF) algorithm were proposed here to realize the segmentation of the complex background medical image. As to the complex medical image, Otsu al...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کامل